Time studies

... or Work studies

CHALMERS

Peter Almström Technology Management and Economics

Learning objectives

- After this lecture the student will be able to ...
 - Select the correct work study method.
 - Carry out a proper time study.
 - Motivate why performance rating is necessary.
 - Do a work sampling study.
 - Calculate the needed number of observations in a work sampling study.
 - Know when work sampling is applicable.
 - Motivate the use of PTS.
 - Understand the purpose of different PTSs.

Why work studies?

- Standardization
- Improvement work
- Fairness
- Productivity
- Indata

CHALMERS

Peter Almström Technology Management and Economics

Determine time standard (for the core method)

- Estimates
- Historical records
- Work measurement
 - Time study
 - Predetermined time systems
- Must be based on <u>facts</u> not guesses

Usable time standard

- If the time standard will be used for planning and control, it is <u>not</u> sufficient to only use the norm time for the value adding activities.
- Supportive activities must be studied and standardized as well:
 - Quality control procedures
 - Materials handling, including package materials
 - Set-up work
 - Planning, reporting, etc.
- On top of that is all the extra time Allowances
 - Personal time
 - Balance losses, waiting time
 - Disturbances

Norm time + Supporting time + Allowances = Standard time

CHALMERS

Peter Almström Technology Management and Economics

Why work studies?

- Standardization
- Improvement work
- Fairness
- Productivity
- Indata

Productivity = M \times P \times U

CHALMERS

Peter Almström Technology Management and Economics

Method	Purpose	Cons				
Time study with stop watch	Measure time for work sequences in running production.	Fast and easy to perform. Easy to understand the result.	Requires performance rating depending on the purpose. The analyst interfere the work.			
Time study with video	e study with video Measure time for work sequences in running production. Method improvement. Easy to perform. Does not interfere the work. Easy to involve ensertere					
Work sampling	Pre-study for improvement projects. Measure the allowance time.	Easy to perform. The only way to measure allowances.	Design and analysis are complicated.			
Predetermined time system	Design a norm time. Method improvement. Performance measurement.	The only way to design a manual work time. Objectivity and fairness. Detailed method analysis.	Requires training. Take long time to perform.			

Peter Almström Technology Management and Economics

History of work studies

CHALMERS

Peter Almström Technology Management and Economics

Frederick Winslow Taylor

(1856-1915)

Waste

"We can see our forests vanishing, our water-powers going to waste, our soil being carried by floods into the sea; and the end of our coal and our iron is in sight. But **our larger wastes of human effort**, which go on every day are less visible, less tangible, and are but vaguely appreciated."

Taylor (1911)

CHALMERS

Peter Almström Technology Management and Economics

What Taylor wanted:

- Increase Productivity (elminate waste)
- High wages <u>and</u> Low labour cost (WIN -WIN)

What Taylor needed to deal with:

- Very low productivity
- Soldiering (taking it easy, working at low performance level)
- · Great in-equalities
- · Abundance of low-cost labour

The Principles

- *First.* They develop a <u>science for each element</u> of a man's work, which replaces the old rule-of" thumb method.
- Second. They <u>scientifically select and then train</u>, teach, and develop the workman, whereas in the past he chose his own work and trained himself as best he could.
- Third. They heartily cooperate with the men so as to insure all of the work being done in accordance with the principles of the science which has been developed.
- Fourth. There is an almost equal <u>division of the work</u> and the responsibility between the management and the workmen. The management take over all work for which they are better fitted than the workmen, while in the past almost all of the work and the greater part of the responsibility were thrown upon the men.

CHALMERS

Peter Almström Technology Management and Economics

Taylor's followers

- Gilbreth (1911): All human work can be reduced to 17 movements: Therbligs
- Abuse of the system:(1914) US law prohibiting stopwatch time studies in all public businesses.
- Tippet (1927): Work sampling
- Maynard, Schwab and Stegemerten (1948): MTM-1

Peter Almström Technology Management and Economics

Time study and Performance rating

Volvo Flygmotor

CHALMERS

Peter Almström Technology Management and Economics

Equipment

Peter Almström Technology Management and Economics

CHALMERS

Peter Almström Technology Management and Economics

AviX Method

Time Study Form

- R Rating (performance)
- W Watch time
- OT Observed time
- NT Normal time

Time Stu	dv Ob	ser	vati	on	Form	1	Stu	iy No	.: :	2-8	35
10000							Ope	ratio	n: D1	Έ	CA
Element Descri	No. and ption	LUD	RE BA	MOU UM . I'CA	E PART DIE, TE PEZT	Z	IN IN	Ace Fix tsio	PART		J
Note	Cycle	R	w	от	NT	R	w	от	NT	R	W
	1	90	90	30	270	90	113	23	207		
	2	100	40	27	270	100	61	21	210		
	3	90	92	31	279	90	25	23	207		
	4	85	50	35	298	100	70	20	200		
	5	100	98	28	180	100	318	20	200		
	6	110	43	25	275	110	61	18	AB		
	7	90	92	31	279	90	416	24	216		
	8	100	44	28	280	85	68	24	204		
	9	90	SOD	32	288	10	23	23	207-	1.8	
	10	110	49	26	286	105	68	19	200		
	11										
	12			-							
	13										_
	14					1					
	15										_
	16										

CHALMERS

Peter Almström Technology Management and Economics

Number of observations

- 10 cycles as rule of thumb.
- Plot times in histogram and determine if normal distributed.
- Use the average or median time.

Peter Almström Technology Management and Economics

Performance rating

...of people

CHALMERS

Peter Almström Technology Management and Economics

Standard performance

Rating methods

- Rating of each element or for whole task?
- Analyst need talent to do consistent ratings
- Speed vs. Precision

<> Normal Time>	
Operator #1 - Observed Time>	Rating > 100
Operator #2 - Observed Time>	Rating = 100
Operator #3 - Observed Time	> Rating < 100

CHALMERS	Peter Almström
UNIVERSITY OF TECHNOLOGY	Technology Management and Economics

Performance rate depends on...

- Difficulty of work task
- Precision requirement
- Environment issues (too hot, too cold etc.)
- Skill, training

Rating methods

- 1. Synthetic rating, i.e. using PTS
- 2. Speed rating

CHALMERS

Peter Almström Technology Management and Economics

Synthetic rating

- Use predetermined times
 Performance = predetermined time / observed time
- The best method!

Speed rating

- Trained to see the speed, use benchmarks
- Need experience
- Prerequisites
 - -Experience of the type of work performed.
 - Use of predetermined (synthetic) time for benchmark of at least two elements.
 - Select operator who is close to normal performance.
 - Use mean value of three or more independant studies.

CHALMERS

Peter Almström Technology Management and Economics

Speed Benchmarks

• 100 performance is equal to:

Dealing a deck of cards (52 cards) into 4 piles in 30 seconds.

or

- Walking 3 miles/h = 4.83 km/h = 1.34 m/s

Peter Almström Technology Management and Economics

Work sampling

CHALMERS

Peter Almström Technology Management and Economics

Work sampling

Alternative names

- Work sampling
- Activity sampling
- Sv. Frekvensstudie

CHALMERS

Peter Almström Technology Management and Economics

Fast to tune in on mean value

Work sampling applications

- Manual work
- Machine work
- Material (buffer) level
- Administrative work
- Overview study
- Allowances

CHALMERS

Peter Almström Technology Management and Economics

Manual assembly (in stations) Results from work sampling 30,0% 25,0% 20,0% 15,0% 10,0% 5,0% o testimotion this testing Por Tooline Institute Dorinine Wattree Roberte Insections of wasping Transpio Reconnected offertrasport 0,0% Indefinat d' N=1400

Machine operators

Total results - B7

```
CHALMERS
```

Peter Almström Technology Management and Economics

Sampling of buffer size

Belin & Hedman, 2010

How to achieve random sampling

- Random intervals
- Random objects with fixed intervals
 Requires study of >1 object
- Use real random figures.

CHALMERS

Peter Almström Technology Management and Economics

Advantages of Work Sampling in comparison with Time study

- More cost efficient (5-50% of time study)
- Qualified analyst not required
- Study can be interrupted
- Less effect on the operators
- More easily accepted by the operators

Disadvantages of Work Sampling in comparison with Time study

- Time study permits a finer breakdown of activities
- No method study
- Averages of groups, no individual differences
- Risk of doing too few samples

CHALMERS

Peter Almström Technology Management and Economics

How to make a study

- 1. Determine purpose
- 2. What objects?
- 3. What activities?
- 4. Pre-study
- 5. Number of samples
- 6. Carry out study and analyse

Work sampling theory

$$N = \frac{z^2 p(1-p)}{e^2}$$

N=Number of observations *p*=Probability of a single occurrence *e*=Acceptable limit of error = σ

With 95% confidence interval z=1,96

$$N = \frac{1,96^2 \, p(1-p)}{e^2}$$

CHALMERS

Peter Almström Technology Management and Economics

Absolute and relative error

- e is dependent on p
- What you can say after a work sampling study is that:

"Activity X represent YY% of total time $\pm e$ % with 95% confidence"

Example:

"Assembly represent 54% of total time \pm 4% with 95% confidence"

 $\frac{4}{54}$ = 7% relative error

"Cleaning represent 4% of total time \pm 4% with 95% confidence"

 $\frac{4}{4}$ = 100% relative error

Examples

Number of observations needed when 10% relative error is acceptable

Smallest _ activity = 20% $\Rightarrow N = \frac{1,96^20,20(1-0,20)}{0,02^2} = 1537$ $N = \frac{1,96^20,10(1-0,10)}{0,01^2} = 3457$ $1.96^20.05(1-0.05)$

$$N = \frac{1,960,03(1-0,03)}{0,005^2} = 7299$$

CHALMERS

Peter Almström Technology Management and Economics

Example

Number of observations needed when 10% relative error is acceptable

$$N = \frac{1,96^20,01(1-0,01)}{0,001^2} = 38031$$

Example

Number of observations needed when 5% relative error is acceptable

$$N = \frac{1,96^20,05(1-0,05)}{0,0025^2} = 29196$$

30000 observations, two samples/minute = 6 weeks fulltime

Self-observation

- Especially for indirect (mobile) work
- Advantage: no extra people needed
- Disadvantage: a disturbance, less accurate
- Technology needed

CHALMERS

Peter Almström Technology Management and Economics

Work sampling exercise

- 1. Value adding
 - Writing on the black board
- 2. Supporting
 - Changeover (change chalk)
 - Planning activity (sit by computer)
- 3. Not value adding
 - Disturbance (drop chalk)
 - Paid break (walk out)

Peter Almström Technology Management and Economics

Predetermined Time Systems and MTM-SAM

CHALMERS

Peter Almström Technology Management and Economics

Predetermined time systems

- Other names:
 - Basic motion times
 - Synthetic times
 - Elementary times
 - Predetermined motion time system
 - Swedish: Elementartidssystem

CHALMERS

Peter Almström Technology Management and Economics

Time for an element

- The time for an element depends on:
 - -Distance of movement
 - -Force (weight, resistance)
 - -Precision

Predetermined time application

1. Standard data development

- Efficient development of standard times
- Sort of simulation, use in early phases

2. Judgement of "a fair day's work"

3. Methods analysis

CHALMERS

Peter Almström Technology Management and Economics

Assar Gabrielsson

H B Maynard

Peter Almström Technology Management and Economics

Peter Almström Technology Management and Economics

International MTM Directorate

- Maintaining the standard
- MTM-1 and MTM-2
- Approved high level: UAS and SAM (not MOST !)

CHALMERS

Peter Almström Technology Management and Economics

Time Measurement Unit - TMU

TMU	Seconds	Minutes	Hours
1	0,036	0,0006	0,00001
100	3,6	0,06	0,001
28	1		
1667	60	1	

MTM-1 (Therbligs)

- Reach R
 - Example: R20B = Reach 20 inches to an object in location that may vary slightly.
- Move M
 - Distance, weight, and precision affects.
- Turn T
- Apply pressure AP

MTM-1 (Therbligs cont.)

- Grasp G
 - Easy to hard (interference or small size)
- Position P
- Release R
- Disengage D
- Eye travel ET, Eye focus EF
- Body, leg, and foot motions

CHALMERS

Peter Almström Technology Management and Economics

Sequential Activity and Method analysis

Sequence - Tool handling

CHALMERS

Peter Almström Technology Management and Economics

Sequence - Object handling

CHALMERS

Peter Almström

echnology	۱N	lanageme	ent a	nd	Econom	ics

SAM Datacard												
1	factor	=	5 TMU									
1	second	са	5,6 factors									
1	1 minute ca 333 factors											
1	l hour	=	20	000 fact	ors							
Motion	Motion Length in cm $\leq 10 \qquad >10 \text{ to} \\ \leq 45 \qquad >45$											
D	istance Clas	is	10	45	80							
Basic Activities Code 10 45 80												
			Factors									
GET	Single	GS	2	4	5							
	Handful	GH	8	10	11							
DUIT	Directly	PD	2	4	5							
FOI	Precise	PP	5	7	8							
A	ddition			Code	Fact							
PUT wit	h weight - w	eight ac	dition	AW	2							
Co	mplementar	y Activ	ities	Code	Fact							
Apply F	orce		_	AF	3							
Step			-	S	3							
Bend ar	nd arise			В	12							
Repeti	Repetitive Activity Code 10 45 80											
	tive Activity	Code	10	45	80							

			Т	hread [Diameter									
Time	rew	Code	≤4	(4)-7	(7)-15	(15)-26								
Time	per grip		4	7	15	26								
Findors	Light	SA	2	2	3	3								
ringers	Resistance	SB	3	3	4	5								
Srew-	Light	SC	2	3	4	-								
driver	Resistance	SD	3	4	5	-								
Yankee s	crewdriver	SE	3	3	-	-								
Ratchet v	wrench	SF	3	4	5	7								
Combina	tion wrench	SG	6	8	10	12								
Allen key	,	SH	3	4	6	8								
T-wrench	ı	SI	6	7	8	10								
	Repetitiv	ve Acti	vities		Code	Fact								
НАММ	ER - per st	roke												
Light wi	th wrist				HA	2								
Heavy v	vith forear	m			HB	4								
READ -	per term													
Read a	term - per	term			RA	2								
Read, c	ompare tei	rms - p	er term		RB	7								
Read a	scale - per	r scale			RC	8								
Control	quality on	object			RD	3								
NOTE -	per letter	r, figure	e or sig	n										
Block le	tters				NA	5								
Ordinar	/ writing				NB	3								
CRANK	- per revo	lution			CA	3								
PRESS	PRESS BUTTON - per button PA 2													

2008 © Copyright Nordic MTM Association

CHALMERS

Peter Almström Technology Management and Economics

		SAM Analysis Form										Payis																	
Object		Date										DWG No.																	
Operation									bsu	ed by											Page of								
			GE	т		PUT								US	SE					RE	TU	JRI	N			Summing up			
		1			1		1			1				İ.		- 1		1			.01		1				raco	JI 5	
Method description	o Sten	80	G	5 1	E Add. for Handful	Weight >5 kg	n Step	80	PD	10	b Add. for Precision	R Apply Force	No.of strokes, grips et	Time of stroke min etc	na dud'avous lo allill		Apply Force	≧ Weight > 5 kg	n Step	1 80	PD	10	b Add. for Precision	Apply Force	D Bend+Arise				
	3	5	4	1 2	6	2	3	5	4	2	3	3	1	n 1	e l	-	3	2	3	5	4	2	3	3	12	F	f	Total	
	3	5	4	1 2	6	2	3	5	4	2	3	3					3	2	3	5	4	2	3	3	12				
																									10				
			-	* 2		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3	3 		-	-			~~~~	3	ь 			3		12				
	з	5	4	1 2	6	2	3	5	4	2	3	3	_	-	-		3	2	3	5	4	2	3	3	12		⊢		
		+	+-		+	+	+	+	┉	~~~~				-				~~~~	~~~~				+	~~~	~~~~				
	3	5	4	1 2	6	2	3	5	4	2	3	3					3	2	3	5	4	2	3	3	12	-			
		-	1		1	1	1	1	f	~~~~	~~~~	~~~~		-	-		~~~	~~~~	~~~~		~			~~~	~~~~				
	3	5	4	1 2	6	2	3	5	4	2	3	3					3	2	3	5	4	2	3	3	12				
			-	* 2		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3	3 		-	-			~~~~	3	ь 	4		3		12				
	3	5	4	1 2	6	2	3	5	4	2	3	3	-	+	+		3	2	3	5	4	2	3	3	12	_	-		
			+-		+		+	+	<u> </u>				····+·	-+	-+												·····		
	3	5	4	1 2	6	2	3	5	4	2	3	3					3	2	3	5	4	2	3	3	12	-			
		-	1		1	1	1	1	f	~~~~	~~~~			-	-		~~~	~~~~	~~~~		~			~~~	~~~~				
	3	5	4	1 2	6	2	3	5	4	2	3	3					3	2	3	5	4	2	3	3	12				
																					_								
	3	5	4	* 2		2			4	2	3	3					د 	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3	- 	4		3	3	12		ļ		
					1	1	1	L	L															_					
Calculation:																			Tot	aln	et ti	me	(fac	tors	s)				

Peter Almström

Technology Management and	Economics

Method	Purpose	Pros	Cons				
Time study with stop watch	Measure time for work sequences in running production.	Fast and easy to perform. Easy to understand the result.	Requires performance rating depending on the purpose. The analyst interfere the work.				
Time study with video	Measure time for work sequences in running production. Method improvement.	Easy to perform. Does not interfere the work. Easy to involve operators.	Requires technology.				
Work sampling	Pre-study for improvement projects. Measure the allowance time.	Easy to perform. The only way to measure allowances.	Design and analysis are complicated.				
Predetermined time system	Design a norm time. Method improvement. Performance measurement.	The only way to design a manual work time. Objectivity and fairness. Detailed method analysis.	Requires training. Take long time to perform.				